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The effect of singlet break-up states in deuteron stripping 
reactions 
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Department of Physics, University of Surrey, Guildford, Surrey, UK 

Received 8 July 1974 

Abstract, The contribution from deuteron break up into spin-singlet, zero relative angular 
momentum, continuum states, to the transition matrix for (p. d) and (d, p) reactions is 
examined. It is shown how these effects can be incorporated naturally into an adiabatic 
approach and results of numerical calculations are presented for some specific reactions. 
It is found that, within limits set by current knowledge of the isovector spin-orbit component 
of the nucleon optical potential, the corrections to a theory which neglects singlet break-up 
states are in general very small. 

1. Introduction 

The adiabatic theory of deuteron stripping reactions associated with transitions between 
bound nuclear states (Johnson and Soper 1972) has been shown to give a good account 
of (d, p) and (p, d) differential cross sections without the use of a lower radial cut-off, 
and without the use of a purely phenomenological deuteron optical potential for a wide 
range of targets and deuteron energies in the range 20-55 MeV (Harvey and Johnson 
1971, McAllen et a1 1971, Satchler 1971, Preedom 1972, Blum et a1 1973, Cooper et a1 
1974, Nolen et a1 1974, Pignanelli et a1 1973). In the work of Johnson and Soper (1972) 
the effects of coupling between the elastic deuteron channel and spin triplet relative 
S-wave continuum states of the neutron-proton system are included in an approximate 
way$. The restriction of the adiabatic theory to S-wave states is consistent with the 
other approximations used in the theory, but the restriction to triplet states has been 
supported only by the knowledge that under certain reasonable conditions (no iso-spin 
dependence of the nucleon spin-orbit force), the singlet states cannot contribute to  
the reaction. 

In this paper the effects of the singlet S-wave channel are quantitatively assessed 
in some specific cases. The necessary formalism is developed in § 2 and the results are 
presented in 9 3. A final discussion is included in Q 4. 

t Present address: Department of Physics, University of Auckland, Private Bag, Auckland, New Zealand. 
$ This method has recently been extended (Johnson 1973 unpublished) to include the effects of tensor force 
components in the neutron-proton force (Johnson and Santos 1971), but these effects will not be considered 
here. 
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2. Formalism 

2.1. The stripping matrix element 

Ignoring explicit contributions involving excited states of the target and residual nuclei, 
the stripping amplitude can be expressed in a familiar way (Austern 1970) in terms of 
the quantity 

T(d, P) = ($h;Jl(~)$jdn)I KpI$hyJ1(P, n)), 

= J d r d ~  IC /L ;JT(~R+$~ - 2 ) r ) $ ~ T ( R + ~ r ) ~ n p ( r ) $ ~ ~ ~ ~ ( R ,  r ) .  (1) 

where y = M,/(Mn+ MA) N A / ( A +  1) where A is the atomic number of the target 
nucleus. In equation (l), $h;J2(p) is the optical model distorted wavefunction for the 
proton, $S(n) is the form factor for the reaction (Philpott et a1 1968), and I/np is the 
neutron-proton interaction potential. The function $EJl(p, n) is the projection onto 
the ground state of the target, of the many-body wavefunctions describing the deuteron- 
nucleus system, having asymptotically a plane wave of deuterons in the incident channel. 

Using the techniques which have been used in the approximate treatment of finite 
range effects (Bencze and Zimanyi 1964, Buttle and Goldfarb 1964), the matrix element 
(1) (abbreviated by (02501)) can be written 

('25'1) = J d~ + ~ ; L ~ Y w $ ~ T ( w ( R ,  4 v n p l $ c J l )  (2) 

where the last factor in equation (2) is defined as 

The operator K is a combination of operators acting only on the neutron and proton 
wavefunctions, defined by 

K = 3[(2 - y)Kp- Kn] = +i(vn + (y - 2)Vp). (4) 

In the zero-range approximation (Bencze and Zimanyi 1964, Buttle and Goldfarb 
1964), equation (3) is replaced by 

(o25ol) = 1 d ~ $ j c i ~ : ( r ~ ) $ j ~ ( ~ ) ( ~ ,  K = 01 vnpl$iTi1). ( 5 )  

The equation satisfied by the function I,$::;, can be written 

( E -  TR-Hnp- K(n, p))I$h7J1) = 0, 

where asymptotically, 

(R, rlt,bhTJl) R +  - m e*l.RXT1(p, n)$d(r)+ (outgoing waves) (7) 
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TR and 
energy 
to be a 

T, are kinetic energy operators, t d  is the deuteron binding energy, E is the total 
of the system, and 4d(r) is the deuteron bound state wavefunction (assumed here 
pure 3 S  state). The spin function is defined as 

where x?j2(p) and x7j2(n) are spinors describing the state of the proton and neutron 
respectively. The effective interaction Ve(n, p) is assumed to have the form (Johnson 
and Soper 1970) 

K(n, p) = Vn(R+&r)+ Vp(R-+r)+ V ( R ) ,  ( 1 1 )  
where Vn and Vp are optical potentials evaluated at half the incident deuteron energy, 
and K(R)  is the Coulomb potential, which in this model is assumed to act on the centre 
of mass of the deuteron. 

Spin projection operators Ps, for the neutron-proton system are now defined, 
where Po is an operator projecting out spin-zero (singlet) wavefunctions, and P ,  is an 
operator prqjecting out spin-one (triplet) wavefunctions, and 

[psi > H n p l  = 0, Po+P, = 1. (12) 

( 0 2 b l )  = dR (R, K = 01 ~ S , l P ~ ~ ] l $ i T J 1 ) $ i ~ J ~ ( Y ~ ) $ ~ ? ( ~ ) ,  (13) 

The zero-range matrix element can now be written, 

S I  s 
where VnOp and VtP are the neutron-proton potentials in the singlet and triplet spin 
states respectively. 

Defining 

IK,) = VS,lplK = O ) ,  

$ ; i S b ~ ( ~ )  = ( R ~ ~ l p s l l $ i ~ J 1 ) / <  y l 1 4 d ) ?  (15) 

(14) 
and 

the matrix element (1 3 )  becomes 

(16) 

Inner products in the space of r only, are denoted by angular brackets, while those in 
the full space are denoted by round brackets. 

The quantity ( r / 1 4 d )  is the zero momentum Fourier transform of the product 
Vnp(r)4d(r), and is the usual constant which appears in the zero-range DWBA limit, eg 
the constant Do of Johnson and Santos (1971)t. 

The equations for $iTJl and I&'~,,~ (equations (6), (14) and (15)), lead to the following 
coupled equations 

( 1  7a)  

<I/Ol#d) 
( 0 2  50 1)  = 1 dR $ i 3 Y  R)$j?(R)< V, I 4 d  ) ( 3:,0, (R) + 3:,0 l(R)) . 

(E-cl - %@:la] = ( 6 1 p l ( H n p - t l  + K ) l $ ~ J 1 ) / < V l 1 4 d ) >  

( E - E O -  %)qkolul = <VOtpO(Hnp-cO+ K) /$ iTJ l ) /<VO14d)?  (17b) 
where to and t l  are at present arbitrary, and the boundary conditions are those appro- 
priate to a beam of (triplet) deuterons in the incident channel. It is at this point that the 
i Expressions similar to equation (16) for the case of a rank-one separable triplet Vnp have been given by 
Bouldin and Levin (1971, 1972). 
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adiabatic approximation is introduced. Noting that the function $iTJl(p, n) is needed 
only within the range of the neutron-proton interaction, the triplet component is 
approximated by 

(R, 4~lI$i::J = 41(r)$:luJw3 (18) 

for Irl less than the range of Vb,(r). This approximation is equivalent to the approxima- 
tion used in Johnson and Soper (1970) when 41(r) is identified with the deuteron wave- 
function. This approximation may be arrived at  by assuming that the dominant com- 
ponents of K p P l 1 $ ~ ~ J  correspond to relative S-wave eigenstates of H,,, with energies 
small compared with the depth of K,.. In this case, it is to be expected that the shape of 
all the important neutron-proton eigenfunctions will be similar for IYI  less than the 
range of V,,(r), and since 4d(r )  is the dominant component of l$KJl), bd(r) should be a 
good approximation to  +l(r). Clearly, if this approximation is reliable, other low energy 
eigenstates ofH,,could also be used for 41(r) ,  which would lead to different contributions 
from the H,, terms on the right-hand side of equations (17). The adiabatic approxi- 
mation assumes that the uncertainty associated with these different choices is not 
important, and therefore that the important components of $LTJl involve eigenstates 
of H,, with energies small compared with the other energies associated with the system. 
The choice 

41(r) = 4d(r ) ,  € 1  = - E d ,  (19) 

has the obvious advantage of ensuring that the dominant elastic scattering component 
of Pl[$L:l) has the correct asymptotic momentum. In this case, for consistency, $:,,, 
must be identified with $:,,, . Using equations (18) and (19) and analogous approxima- 
tions for the singlet channel leads to 

(R, r I p l I $ ~ ~ l )  2: 4d(r)$:lu1(R)? (204 

with Irl less than the range of V,!,&r), and 

for Irl less than the range of V:,(r), where $o(r) is some low energy singlet eigenstate of 
H,, with energy eo. It is natural to identify the state 40( r )  with the singlet scattering 
state at the ‘resonant’ energy ( -  0.06 MeV), but within the framework of the adiabatic 
approximation, there is no real reason for doing this, and i t  is to be expected that any 
other low energy scattering state would be equally suitable. Just as the bound state 
deuteron energy was chosen for the triplet channel, however, on the grounds that the 
dominant part of the wavefunction will then have the correct asymptotic momentum, 
it can be argued that the dominant singlet break up will be to the ‘resonant’ state 
(Kolltveit and Nagatani 1969) and choosing the ‘resonant’ energy for eo, gives the correct 
asymptotic momentum for this component of the singlet wavefunction. The presence 
of the ‘resonance’ affects mainly the amplitude of the singlet neutron-proton wave- 
function in this energy region, and not the shape for Irl less than the range of V:,. From 
the point of view of the adiabatic approximation, it is the shape of the wavefunction 
which is most important, and the approximations (20) rely on the shape of all the 
important low energy eigenfunctions of H,, being similarwithin the range ofthe neutron- 
proton force. 



Efect  of singlet break-up states in deuteron stripping 202 1 

Assuming that the range of Kp(r) is the same in both the triplet and singlet states, 
and that the potentials differ mainly in strength, substitution of equations (20) into 
equations (17) leads to 

(Ed- TR - Vl l ( R ) ) $ k l u ~  = (:) vlO(R)$Elul * (21a) 

and 

In the zero-range approximation, these expressions are very simple, for example 

V : w )  = (Pl,T/,(C ~)plS)#.=o? (25) 

with similar equations for Voo, Vlo and Vol. P,, is a product of spin triplet and relative 
S-wave projection operators. The boundary condition of an incident plane wave of 
triplet deuterons defines the following asymptotic forms for the solutions 

$klul(R) -c. ~ 7 1  eikl.R+(outgoing waves), (26a) 
R+ m 

$:lul(w - xo (outgoing waves), (26b) 
R- t  a 

with the usual modifications for Coulomb effects. 
Since it has been assumed, in the adiabatic approach, that the dependence of the 

equations upon the energies Eo and f d  is very weak, the only way in which the detailed 
properties of the singlet neutron-proton system enter the calculation is through the 
factors a and a'. In fact, since the ranges of the V:; are assumed to be equal, a and a' 
are equal to the ratio of the strengths of V,Op and VkP, 

(27) 
The direct singlet contribution to the stripping matrix element in (16) thus differs from 
the triplet contribution by the factor a, but it is clear from the coupled equations, that 
even when ct tends to zero, the singlet still affects the triplet wavefunctions, and hence 
the triplet matrix element, in second order. 

a = a' = v,O,/v:,. 

2.2. Partial wave expansion 

Making partial wave expansions of the functions ~ k l l u l  leads to the following equations 

$2101(m = ~i11ulu i (wx7~(P3 n), (28) 
ai 
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The radial functions have the following normalization 

f:,,,(klR) - jll(klR)+(outgoing waves), 
R-CC 

(304 

f:,, (k, R) 5 (outgoing waves), 
R -  m 

and I T ; ,  is the radial kinetic energy operator 

T = ---+---L h2 ( d2 2 d l ( I  +1)) 
I' 2p1 dR2 R d R  R2 ' 

(34) 

Assuming now that the neutron and proton spin-orbit potentials differ only in their 
strength, and have the same radial shape of the usual derivative form, the potentials 
appearing in equations (33) may be evaluated using the following results 

Ps[ Vp(rpYp a p  + Vn(rn)ln * anlP~ 
I d  
R dR = - - Ps[- VS,. + V/sno)gan + up) . Lf(l R + *rl) 

P, = n-p relative S-wave propagator, 

L = i- 'RxV,.  
Also, 
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where 
(VI4i)  R a I ( R )  = v:( VIfpr(R-+r)I4i) + v,"( VIfnr(R++r)I4i), (40) 

where!,, andf,, are the form factors for the proton and neutron real potentials respect- 
ively, with a similar formula for Wjmag. It is now clear, that if the neutron and proton 
spin-orbit potentials are equal, then the stripping is determined purely by the triplet 
states, since the coupling term vanishes, and no transitions between different total spin 
states are possible. Rewriting the stripping matrix element (16) as 

(41) ( O 2 5 O l )  = ( v l 1 4 d ) { ( f 1 2 5 0 1 ) 1  + a ( c 2 t O l ) o ) ?  

( ~ ~ 5 0 ~ ) s ~  = dR $ ~ ~ ~ ~ ( ~ R ) $ ~ ~ ( R ) I $ ~ l u l ( R ) ,  (42) 

where 

and inserting the partial wave expansions of I$~llal(R) and the proton wavefunction, 
and expanding the form factor as 

leads to 

and 
" b  

The factor in curly brackets in equation (44) is a 9J  symbol (Brink and Satchler 1962). 

2.3. General considerations 

Although the formulae above give the stripping matrix element in the zero-range 
approximation only, finite range effects can be incorporated readily by using the 
approximate techniques used in the conventional theory (Johnson and Soper 1970, 
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Bencze and Zimanyi 1964, Buttle and Goldfarb 1964, Harvey 1970). Neglecting for 
the moment the coupling to the singlet channel, the calculation of the stripping amplitude 
using the adiabatic theory involves the use of the adiabatic potential V"(R) instead of 
the usual deuteron optical-model potential. It must be emphasized again (Johnson 
and Soper 1970), however, that the adiabatic potential is not expected to yield the 
observed elastic scattering, since the wavefunction which it generates, contains for any 
finite /RI components corresponding to the motion of broken-up neutron-proton pairs. 
The results of the use of the adiabatic potential instead of the conventional deuteron 
optical potential have been discussed elsewhere. In a previous paper (Harvey and 
Johnson 1971) it was shown that the results of the two theories can differ significantly, 
and that the use of the adiabatic potential is often similar to the use of the conventional 
potential with extreme damping of the interior and surface contributions. The cal- 
culations in this paper were performed to investigate whether the inclusion of coupling 
to the singlet channel of the neutron-proton system would invalidate any of the results 
which were obtained earlier without including this coupling. 

I t  may be noted that the equations giving the structure of the singlet contributions 
to the stripping amplitude are of a very general nature, and are not limited by the 
validity of the adiabatic approximations. The contributions of the singlet channel may 
be split into two categories. First there is the direct singlet contribution from the singlet 
matrix element, which depends on the amount of coupling between the spin channels, 
and on the ratio of the singlet and triplet neutron-proton potentials. The effect of this 
contribution is to modify the J ,  = I ,  partial wave in the triplet state and hence the 
balance between the contributions of different total angular momentum radial integrals 
for a given orbital angular momentum. In this respect the singlet contribution resembles 
the contribution of vector and tensor spin-orbit forces in the deuteron channel in the 
conventional calculation. Secondly, the singlet channels contribute, in second order, 
to the triplet matrix element. This contribution, which depends on the amount of 
coupling between the spin channels, can be shown to be equivalent to a non-local tensor 
spin-orbit force (Harvey 1970). In numerical calculations it  is found that the direct 
singlet contribution is far more important than the corrections to the triplet matrix 
element. In the next section, the results of using the adiabatic theory are presented, 
including coupling to the singlet channel for a typical reaction. 

3. Calculations including singlet coupling 

As became clear in the previous section, the difference of the nucleon spin-orbit forces 
plays a crucial part in the inclusion of singlet S-waves in stripping reaction calculations. 
Indeed, if these forces are assumed equal (as is generally the case) then the singlet S- 
waves play no part in stripping reactions. Nucleon spin-orbit forces are at present 
poorly determined, and there is ample scope for an isobaric spin dependence of the 
spin-orbit potential, on the available experimental evidence. In the latest determination 
of the systematic optical potentials (Bechetti and Greenlees 1969), the spin-orbit 
strength is quoted as 6.2 1 MeV, leading to values of 1 V, - V'l of up to 2 MeV being 
not unreasonable. This value is also consistent with results based on bound single- 
particle properties (Millener and Hodgson 1973). In view of this uncertainty, the 
approach adopted in the subsequent calculations has been to assume that small differ- 
ences in the nucleon spin-orbit potentials are consistent with the experimental evidence, 
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and to investigate the relationship of the results to these small differences to determine 
the qualitative effects of singlet coupling in stripping reactions. 

The coupled equations (32) have been solved in a symmetric approximation for 
I ,  = Jl  , under which circumstances they can be decoupled by addition and subtraction, 
and there are then four equations to solve for a given I ,  value in the deuteron channel. 
The equations are very nearly symmetric, since the only asymmetry is in the lack of the 
spin-orbit potential in V:,, compared with Vyil, and in the energy term (E,, + c0). It is 
assumed throughout the adiabatic calculation that the dependence upon these energies 
is negligible, and the spin-orbit term is approximately 5 % of the strength of the real 
parts of V?o and Vyil. The coupling terms are symmetric in zero-range and finite-range 
approximations and are easily calculated, since they have the same radial dependence 
as the spin-rbit potentials. 

It is convenient to  note here, that in first order, the magnitude of singlet radial 
wavefunctions is proportional to the strength of the coupling term, and hence to the 
difference of the spin-orbit forces. The convention used for defining the spin functions 

\ 

I 

I I I I I 

30 60 90 I20 150 
eCm(deg) 

Figure 1. Differential cross sections including singlet coupling effects for the reaction 
54Fe(d, p)$’Fe at 23 MeV calculated for various values of the isospin dependence of the 
nucleon spin-orbit potential (B = V r -  V r ) ,  
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x:; is relevant here, since changing the labelling of neutron and proton changes the 
sign of the coupling term, and of x:;= o .  The difference of the spin-orbit forces (VS,. - V?) 
is designated by j in the figures. The fact that the singlet radial wavefunctions are 
proportional to j can be shown to lead, in first order, to angular distributions and 
polarizations involving a term linear in j, that is, of the form 

The results of a series of calculations for the deuteron stripping reaction on 54Fe 
at 23 MeV are shown in figures 1 to 3. It can be seen that the effects of singlet coupling, 
like those of spin-orbit forces, are large angle effects, and small. Even the unphysical 
value of p = 5 MeV, leads to no dramatic effect on the cross section in figure 1. It 
should be noted here, that the calculations leading to the curves shown were not com- 
pletely consistent, inasmuch as the spin-orbit force in the proton channel, and that 
used to generate the neutron form factor, were not altered while the parameter was 
changed. The effects on the deuteron analysing power, and tensor asymmetries, shown 
in figures 2 and 3 (Madison convention, Barschall and Haeberli 1971) are larger. How- 
ever, these calculations do not include deuteron D-state effects which are known to be 
crucial in an understanding of deuteron asymmetries (Brown et al 1971, Johnson et a1 
1973, Rohrig and Haeberli 1973, Knutson et al 1973). These curves are useful therefore 
in so far as they indicate the order of magnitude of singlet break-up effects and will be 

“O 1 

0 

-1.0 J 
Figure 2. Calculated deuteron analysing power and tensor asymmetry for the reaction 
54Fe(d, p)55Fe including singlet coupling effects. 



Eflect of singlet break-up states in deuteron stripping 

bo 1 

2027 

-0.5 1 
/3 (MeV) I 

-1.0 J 

-0.5’ 

Figure 3. Calculated tensor asymmetries for the reaction 54Fe(d, 
coupling effects. 

including singlet 

directly relevant to experiment only when a very detailed fit is attempted. I t  can be 
seen that the first-order expansion (41) is quite accurate. 

The calculations were performed using nucleon potentials from Becchetti and 
Greenlees (1969) as discussed in Harvey and Johnson (1971). The value 0.7 was used 
for the ratio a (equation (27)) this being the value obtained from the Yamaguchi (1954) 
potential when the singlet and triplet ranges are assumed to be equal. 

4. Summary 

The investigation of the effects of coupling to  the singlet neutron-proton break-up 
states required the use of a reformulated stripping matrix element consisting of the sum 
of singlet and triplet matrix elements. With the effective potential chosen as the sum of 
the neutron and proton optical potentials, the singlet contributions vanish in the case 
where there is no isospin dependence of the spin-orbit potential. For reasonable values 
of the difference in spin-orbit potentials, it was found that rather small differences were 
made to the predictions of the simple theory which includes only triplet contributions. 
The singlet coupling effects were found to be greatest on the tensor polarizations and 
asymmetries. These results support the neglect of singlet contributions in the investiga- 
tion of elastic scattering, using the adiabatic theory, in the work of Johnson and Soper 
(1970) and in the analysis of deuteron stripping reactions using the adiabatic theory, 
and in any case these effects were found to be smaller than deuteron D-state effects. 
The essential point is that although the large observed value of the singlet n-p scattering 
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length suggests the singlet S-wave n-p continuum should play a role comparable 
to that of the triplet n-p continuum, this consideration is outweighed by the fact that 
the singlet S channels are coupled to the triplet S channels only through the differ- 
ence between the neutron and proton spin-rbit forces, and our quantitative results 
show that for reasonable physical values of this difference the net effect on (d, p) observ- 
ables is generally small. 
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